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Abstract—Accurate vibration measurement is crucial for mon-
itoring and diagnosing industrial equipment. Existing solutions
require either installing contact sensors on the equipment or
using non-contact sensors such as laser. Both approaches involve
complex deployment, stringent environmental conditions, and
high cost. As a better alternative, we propose a sub-millimeter
acoustic vibration measurement system using a single smart-
phone, called Mobile-Vib. Firstly, we develop a novel acoustic
ranging method that builds on traditional acoustic ranging
techniques, incorporating the reflection principle of acoustic
signals from vibrating objects. This approach addresses the
challenge of acoustic signal refresh rate in vibration measurement
by employing advanced signal design and processing techniques.
Secondly, we design a noise removal algorithm utilizing the
dual-channel technology of smartphones to minimize multipath
signals and noise interference, enabling accurate phase estima-
tion. To mitigate the impact of unrelated human motions in
real-world measurements, we implement an optimisation-based
method to correct distortions and reduce errors. Finally, by
clarifying the relationship between phase changes and actual
displacement, we enable tracking of vibration displacement in
industrial environments. We have implemented Mobile-Vib, and
the extensive experimental results demonstrate an average error
of approximately 0.629 mm in displacement estimation and 5.6 Hz
in frequency estimation at a 1-meter distance from the vibrating
object in real industrial vibration monitoring scenarios.

Index Terms—Vibration monitoring, Acoustic, Smartphone,
Echo ranging

I. INTRODUCTION

V IBRATION is a common occurrence in mechanical
equipment. During normal operation, a mechanical de-

vice usually exhibits minimal vibration. However, when inter-
nal components undergo changes such as wearing, misalign-
ment, looseness, or poor sealing, vibration displacement and
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frequency increase [1], [2]. As a result, vibration measurement
is widely used to assess the health of equipment in industrial
environments [3], [4].

Traditional methods used for vibration measurement rely on
contact-based specialized sensors [3], [5], such as accelerom-
eters [6] and piezoelectric sensors [7], which are common
devices utilizing small changes in acceleration to calculate
vibration amplitude. However, due to error accumulation, the
vibration measurements can contain measurement deviations.
In addition, they need to be deployed at multiple locations on
the equipment, leading to high costs. This approach is limited
by its associated challenges in sensor deployment, mainte-
nance, and subsequent data collection. In contrast, non-contact
methods offer advantages in addressing these challenges and
become increasingly popular, such as vibrometers [8], [9]
and vision-based [10], [11] solutions. However, vision-based
solutions require favorable on-site conditions. They are not ap-
plicable in low visibility or foggy environments. Additionally,
laser-based solutions are costly and still face limitations when
it comes to multipoint and large-scale vibration measurements.

With the development of wireless sensing technology, sev-
eral studies have used electromagnetic waves for vibration
measurement. For example, Radio Frequency Identification
(RFID) solutions take advantage of the reflection characteris-
tics of RF signals and their immunity to light interference by
attaching passive RFID tags to the target object and measuring
the vibration of the object through the RFID system, achieving
vibration measurement at high precision [12], [13]. However,
in these methods, tags are placed on the surface of the object
to be detected, which imposes high requirements for sensor
deployment and data collection. Millimeter-wave radar, on
the other hand, analyzes the transmitted and received signals,
extracts the phase of the signals, and uses phase variations to
detect the changes in vibration amplitude. In [14], [15], multi-
ple coherent observations of the same vibration signal are used
to enhance geometric characteristics and improve vibration
monitoring. Multi-Vib [16] proposed an innovative vibration
marking design, enabling multi-point vibration monitoring
with a single millimeter-wave radar, achieving micrometer-
level vibration measurement. The unique wavelength charac-
teristics of the millimeter wave radar enable micrometer-level
vibration detection [1], [16], giving them a distinct advan-
tage in wireless sensing solutions for vibration measurement.
However, in many real-world industrial settings, the vibration
amplitudes of various devices fall within the sub-millimeter to
millimeter range [17], [18]. As a result, these applications do
not require micrometer-level precision in vibration monitoring,
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which would entail stringent environmental and deployment
constrains. In addition, the high cost of the millimeter wave
radar, along with the challenges of its deployment and data
acquisition, makes it unsuitable for vibration measurements in
scenarios requiring high mobility at any time.

Given the high cost of electromagnetic wave-based solutions
in practical applications, some studies have adopted acoustic-
based approaches for vibration detection [19]–[21]. For in-
stance, the system presented in [22] achieves online non-
intrusive detection of wood pellets in pneumatic conveying
pipelines by capturing the vibrations and sounds generated
by the collisions between particles and the pipeline. In [23],
a fouling detection method is proposed for large-scale duct
systems, using acoustic vibrational excitation for external, non-
intrusive, and non-destructive fouling detection. Additionally,
in [24], an ultrasonic signal with a single-frequency at 40
kHz is utilized to measure the vibrations of objects. However,
current acoustic-based vibration detection methods primarily
rely on ultrasonic signals, which are severely affected by air
attenuation and face significant limitations in terms of vibra-
tion detection range. Moreover, such solutions often require
customized equipment, making them unsuitable for vibration
measurement needs in high-mobility scenarios.

Compared to customized acoustic solutions, smartphone-
based acoustic approaches offer a low-cost and user-friendly
alternative for vibration measurements. This approach en-
ables vibration measurements to be performed anytime and
anywhere, addressing the limitations of earlier methods in
high-mobility, routine vibration monitoring scenarios, as well
as overcoming the constraints on the detection range by
traditional customized acoustic equipment.

Currently, there are several applications of acoustic sens-
ing technology on commercial smartphones [25], [26].
Spirosonic [27] utilized smartphones to measure chest wall
movements through phase analysis of single-frequency sig-
nals, thereby completing centimeter-level human pulmonary
function tests. BlinkListener [28] quantitatively modeled the
relationship between signal variations and subtle movements
caused by blinking and interference, achieving millimeter-
level human blink detection. These solutions analyze relatively
slow-moving objects in noise-free environments, utilizing the
characteristics of reflected signals to determine the features of
the reflected objects, thereby achieving acoustic sensing.

However, these methods cannot be directly applied to
vibration measurements in industrial environments, due to
the following challenges. Firstly, in industrial environments,
the vibration speed of objects is very high, far exceeding
the frequency of movements such as respiration, while the
requirement for vibration measurement accuracy is often at the
sub-millimeter level. Secondly, there is significant multipath
interference and low-frequency noise corruption in industrial
environments. The received signals are often composed of
reflected signals from vibrating objects and surrounding equip-
ment. These signals, under the influence of low-frequency
noise, make it difficult to extract the actual vibration sig-
nals. It is easy to misidentify noise as small variations in
the vibration signal. Additionally, when using smartphones
for vibration measurements in industrial settings, irrelevant

motions introduced by human hands can lead to errors in
vibration measurements, affecting the actual results of the
vibration measurements.

In order to address these challenges, we propose Mobile-
Vib, a system for vibration measurement using a single
smartphone. To this end, we first introduce the principles
and methods of utilizing a single smartphone for vibration
measurement, and the selection of custom acoustic signals. We
then develop an innovative Sub-Frame Chirp (SFC) algorithm
based on a ranging method, which resolves the issue of
measuring vibrations when the object’s vibration frequency
is much higher than the signal refresh rate. Unlike traditional
solution [29] that rely on overlapping transmitted signals, our
method avoids confusion between transmitted and received
signals and ensures that the signal can meet high-precision
ranging requirements in industrial scenarios. Thirdly, lever-
aging the dual microphones on the top and bottom of the
smartphone, we propose a novel Top and Bottom Microphone
(TBM) algorithm, combining the real-time computing power
of smartphone. By analyzing the differences in the received
signals through the physical propagation model of the dual-
microphone channels, this algorithm effectively removes noise
and multipath signals, achieving sub-millimeter detection ac-
curacy. Lastly, we employ optimization algorithms to reduce
vibration errors caused by hand movements and successfully
achieve robust vibration tracking. To summarize, we have
made the following novel contributions in this paper:

• We developed the Mobile-Vib system for vibration mea-
surement, which, to our best knowledge, is the first
such system based on acoustic signal using a single
smartphone, achieving measurement accuracy at the sub-
millimeter level.

• We designed SFC and TBM algorithms to address signal
refresh rate issues and to mitigate multipath and noise
effects in industrial environments. Using optimization
methods, we corrected errors caused by hand motions
during vibration measurement and subsequently imple-
mented vibration monitoring based on the relationship
between the variation of vibration and phase.

• We implemented Mobile-Vib on commercial smartphones
and conducted extensive vibration measurement and mon-
itoring experiments in both laboratory and real industrial
environments, verifying the robustness of Mobile-Vib in
complex industrial settings.

The remainder of this paper is organized as follows. We
first introduce the principles of acoustic vibration measure-
ment based on smartphones and the characteristics of the
smartphone’s dual-microphone channels in Section II. Then,
we discuss traditional methods for smartphone-based acoustic
vibration measurement in ideal environments in Section III.
In Section IV, we present a geometric fitting based signal
processing method to remove interference in real-world en-
vironments, in conjunction with smartphone hardware. Af-
ter this, we perform a systematic evaluation of commercial
smartphone devices in Section V. In Section VI, we discuss
the limitations of the system and its potential applications
in industrial environments. Finally, we conclude the paper in
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Section VII.

II. PROBLEM FORMULATION

The principle of acoustic vibration measurement based on
smartphones involves using the smartphone’s speaker to emit
a custom signal e(t), where t represents the time index. After
being reflected by the vibrating object, the signal is received
by the smartphone’s microphone as the reflected signal r(t).
By calculating the time delay τ between transmitted and
received signals, the distance between the smartphone and the
vibrating object at a specific time stamp can be determined.
Then, the smartphone calculates the distances D(t) at two
adjacent timestamps, denoted as D(1) and D(2), respectively.
Subsequently, by taking the variation between these distances,
the relative movement of the vibration ∆d = D(2) − D(1)
is obtained. Finally, the vibration displacement is obtained
by summing the relative movement of the vibration with
the same sign over multiple consecutive timestamps. Given
the relatively short duration of the reflected signal at each
timestamp, it is assumed that the target object remains in
a steady state while reflecting the acoustic signal. Fig. 1
illustrates the proposed smartphone-based acoustic vibration
measurement system.

In real-world applications, the microphone in a smartphone
receives the signals not only reflected by the vibrating object,
but also directly propagated from its loudspeaker, as well as
those reflected from other equipment in the industrial environ-
ment. The signals from different paths correspond to different
time delays τi and different signal attenuation coefficients αi,
where i denotes the index of the path. According to the arrival
times of the sound paths, the time delay τ1 corresponding to
the first path is considered as the direct path, which is the
signal propagating directly from the smartphone’s speaker to
its microphone. The time delay τ2 corresponding to the second
path is taken as the reflection path from the vibrating object,
which represents the actual reflected vibration signal (emitted
from the smartphone’s speaker, reflected off the vibrating
object, and returning to the smartphone’s microphone). Time
delays τi, where i > 2, correspond to interfering reflection
paths from other devices.

To effectively assess signal quality, the Signal-to-Noise
Ratio (SNR) is commonly used for measurement. The signal
refers to the valid signal corresponding to the reflection path,
while the noise refers to the interference signal generated by
mechanical equipment within the frequency range of the valid
signal. A higher SNR indicates that the signal is stronger
relative to the noise, resulting in a smaller impact of noise on
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Fig. 1. The principle of estimating the vibration movement of a vibrating
object using a single smartphone.
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Fig. 2. The relationship between the actual distance from the smartphone to
the vibrating object and the distances measured by the two microphones.

the signal in vibration monitoring, thereby enhancing system
performance. In order to maximize the SNR in practice, efforts
are made to keep the smartphone’s screen plane perpendicular
to the reflection plane of the vibrating object. This ensures
that the sound waves hit the surface of the vibrating object
perpendicularly and reflect back to the smartphone. This
arrangement allows the shortest path method to be used
during signal processing to distinguish direct signals, reflected
signals, and interference signals from other devices. Although
studies indicate that the size of the vibrating object affects the
SNR [30], [31], in practical application scenarios targeted by
the algorithm, we assume that the size of the vibrating object
has a negligible impact on vibration monitoring.

However, there are other significant challenges that impact
adversely on the accuracy of vibration measurements, includ-
ing interference from multipath signals and ambient noise, as
well as the Doppler effect on the reflected signals caused
by the vibration of the object. Fig. 2 shows the layout of
dual microphones on a smartphone. The smartphone features a
dual-microphone design with the two microphones positioned
at the bottom and top, respectively. The distances between
the microphones and the speaker, corresponding to the direct
path, are L1 and L2, respectively. Meanwhile, the distance
between the top microphone and the bottom microphone of the
smartphone is L3, and the vertical distance from the surface of
the vibrating object to the surface of the bottom microphone
of the smartphone is D.

According to Fig. 2, when the acoustic signal is vertically
reflected from the vibrating object back to the microphones,
the distances Dy(t) between the vibrating object and the
bottom and top microphones at the same timestamp are defined
to differentiate the measurements of the two microphones.
Here, y = 1 or 2, represents the index of the bottom and
top microphones, respectively. The distance measured by the
bottom microphone is given by D1(t) = (2D− L1)/2, while
the distance measured by the top microphone is D2(t) =
(2D+L3−L2)/2. A relationship between the actual distance
from the smartphone to the vibrating object and the distances
measured by the two microphones is established, which can
be represented as follows:

D =
2D1(t) + L1

2
=

2D2(t) + L2 − L3

2
(1)

Additionally, at the same timestamp, there is a fixed differ-
ence between the distances measured by the two microphones,
defined as LD = D2(t) − D1(t) = (L3 + L1 − L2)/2. By
utilizing this fixed distance difference, the time difference
between the two microphones is calculated, which helps
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eliminate interference from multipath signals. At the same
time, due to the symmetry of the target object’s vibration in
the same dimension, the signals from multiple timestamps are
used for fitting, thereby mitigating the impact of the Doppler
effect.

III. VIBRATION ESTIMATION BASED ON ACOUSTIC SIGNAL

In this section, the selection of custom signals and the
vibration measurement methods based on smartphone acoustic
signals are discussed, without considering the interference
from multipath signals, noise, and other factors present in the
actual environment.

A. Selection of custom signal

In terms of signal selection, acoustic chirp signals are
chosen due to their strong correlation, which makes it easy
to distinguish them from noise. An inaudible frequency range
is also selected to reduce audible noise and improve measure-
ment accuracy and resolution. The signal is defined as:

e(t) = cos(2πfmint+
πBt2

T
) (2)

where fmin, B and T represent the initial frequency, band-
width, and duration of the chirp signal, respectively.

In practical industrial scenarios, multipath effects are quite
significant. The characteristic of the chirp signal, where the
signal frequency changes linearly over time, gives it strong
autocorrelation properties, making it robust against multipath
interference.

Additionally, to enhance the robustness and effectiveness
of the custom signal, a Hanning window w(t) = 0.54 −
0.46 cos(2πt/(Tw)) is applied, where Tw is the duration of
the Hanning window, which sharpens the correlation curve and
accelerates sidelobe attenuation. Furthermore, considering the
sampling rate limit of smartphones, which is normally 48 kHz,
the signal frequency range of 17 kHz to 22 kHz is selected for
acoustic vibration measurement, which does not affect users
during operation, as these frequencies are inaudible to the
human ear.

B. Vibration estimation based on a single smartphone

The distance D(t) between the vibrating object and the
smartphone can be divided into two parts, expressed as D(t) =
d0 + d(t), where d0 is the coarse distance and d(t) is the fine
distance. Coarse distance estimation is achieved through beat
frequency estimation, and fine distance estimation is achieved
through phase extraction. In this analysis, only the ideal case
of a single vibrating object reflection is considered, with
interference from multipath effects and noise being ignored.

1) Beat frequency estimation: The Frequency Modulated
Continuous Wave (FMCW) method [29], [32] is used to
achieve coarse distance estimation. For the custom chirp
signal e(t) emitted by the smartphone, its reflected signal was
obtained after a time delay τ and a level attenuation α, as
r(t) = αe(t − τ), where τ = 2D(t)/c, and c is the speed
of sound. By using Trigonometric functions cosM cosN =
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Fig. 3. Performing FFT on the mixed signals to obtain the frequencies of the
direct and reflected signals, and estimating the beat frequency by calculating
the frequency difference.

(cos(M−N)+cos(M+N))/2, and filtering out the irrelevant
high frequency components, the resulting mixed signal m(t)
can be obtained by multiplying the emitted e(t) and received
signals r(t) as:

m(t) =
α

2
cos(2π

B

T
τt+ 2πfminτ −

πBτ2

T
) (3)

The mixed signal is further simplified as:

m(t) =
α

2
cos(2πft+ θ) (4)

where f = Bτ/T and θ = 2πfminτ − πBτ2/T denote the
beat frequency and the initial phase of mixed signal m(t),
respectively.

The beat frequency is a function of time delay τ (and thus
also a function of distance difference), therefore, it can provide
the coarse distance d0 of the reflecting object relative to the
smartphone.

In practice, the Fast Fourier Transform (FFT) is utilized
to extract the beat frequency by calculating the frequency
difference between the direct signal corresponding to the
time delay τ1 and the reflected signal corresponding to the
time delay τ2 in the spectrum of the mixed signal. The
frequency f(1), corresponding to the maximum magnitude in
the spectrum, represents the direct signal. The frequency of
the actual reflected vibration signal, denoted as f(2), normally
corresponds to and is detected as the first peak following the
maximum component as shown in Fig. 3.

Therefore, d0 can be calculated by determining the fre-
quency difference between the reflected signal and the direct
signal:

d0 =
cB

2T
∆f =

cB

2T
(f(2)− f(1)) (5)

However, in practice, the distance between the smartphone
and the vibrating device is relatively close and cannot be
neglected compared to the distance between the microphone
and speaker on the smartphone. Therefore, after calculating
the absolute distance, it is necessary to compensate for the
known distances L1, L2, and L3 between the smartphone’s
microphone and speaker to obtain accurate coarse distance d0
based on Eq. (1).

Specifically, the computational load of the smartphone is
considered, and an FFT with a length of 1024× 16 points is
performed on the mixed signal m(t), resulting in a spectrum
with 8192 discrete frequency points. The frequencies f(1)
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Fig. 4. The relationship between the angular variation of phase and the
movement of the vibrating object.

and f(2), corresponding to the maximum and the first peak
following the maximum magnitudes, respectively, are then
detected to calculate the frequency difference.

2) Phase extraction: The resolution in the coarse distance
estimated with beat frequency is limited by the frequency
bandwidth B of the chirp and can be calculated as c

2B .
Therefore, when the coarse distance estimates at adjacent
timestamps fall within the same range bin, meaning that
the coarse distance estimates d0 are the same at different
times and within the precision resolution range, the vibration
measurement ∆d is only related to d(t). Thus, vibration
measurement can be achieved by solving the difference in fine
distance estimates d(t) through phase extraction at different
times [27], [33]. However, vibration measurement with sub-
millimeter precision is constrained by the vibration velocity
of the target object, requiring that the object’s vibration speed
does not exceed the ratio of the coarse distance resolution to
the time difference between adjacent timestamps.

According to Eq. (4), the specific expression for the initial
phase θ = 2πfminτ − πBτ2/T can be obtained. Note that,
since the quadratic term of τ is negligible, the initial phase is
approximated as θ ≈ 2πfminτ . The relationship between the
movement from distance D(1) to D(2) and the phase variation
from the corresponding phase at distance θ(1) to θ(2) can be
further obtained as follows:

∆d = D(2)−D(1) = d(2)− d(1)

=
c(τ(2)− τ(1))

2
=

c

2
(
θ(2)− θ(1)

2πfmin
)

(6)

where τ(1) and τ(2) represent the time delay between the
transmitted and received signal at time 1 and 2. Fig. 4
illustrates the relationship between the angular variation of
mixed signal’s phase and the movement of the vibrating object.

In practice, the beat frequency obtained from the coarse
distance estimation is used to perform In-phase and Quadrature
phase (IQ) decomposition on the mixed signal m(t) [27], [34].
After performing the IQ decomposition, the phase values on
the IQ coordinates can be expressed as:

I = m(t)× cos(2πft) =
α

4
cos(θ) + high freqency

Q = m(t)× sin(2πft) = −α

4
sin(θ) + high freqency

(7)

Using low-pass filtering, the actual initial phase can be
determined as θ = arctan(Q/I). Then, the initial phase θ(t)
at different moments can be calculated based on the IQ de-
composition, and the vibration movement is determined based
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Fig. 5. Decomposing the chirp signal into sub-frame chirp signals.

on Eq. (6) by analyzing the initial phase variation between
different moments. After that, the vibration displacement is
obtained by summing the movement variations of the object
with the same sign over consecutive timestamps.

IV. SYSTEM DESIGN AND IMPLEMENTATION

Our system implements vibration measurement based on
smartphones. In practical industrial scenarios, issues like mul-
tipath signal effects and noise interference can arise. Therefore,
an SFC algorithm is first designed based on smartphone audio
signals, which helps address the signal refresh rate issue
and reduces vibration measurement errors. Secondly, a TBM
algorithm is established to mitigate multipath effects using the
dual microphones at the top and bottom of the smartphone,
thereby reducing noise through consistency constraint. Sub-
sequently, leveraging the phase characteristics of the signal,
the vibrational influence is corrected by quantifying geometric
distortion. Ultimately, vibration tracking and estimation are
conducted through the relationship between IQ samples and
vibration movement.

A. Sub-Frame Chirp algorithm

In smartphone-based vibration measurement, as mentioned
in Section III-B2, when the motion of a vibrating object
fell within a specific range bin, the distance is obtained by
calculating the phase variation between consecutive frames,
i.e., between consecutive timestamp signals. However, this
method is limited by the phase sampling rate. Assuming each
frame of the signal lasts 50 ms, then 20 phase samples can
be obtained per second. When the variation between adjacent
phase samples exceeds π radians, indicating that the movement
between two frames exceeds 5 mm, phase wrapping occurs
due to the limitations of the phase sampling rate, leading
to erroneous estimation of the phase variation [29], [35]. To
avoid phase wrapping caused by signal refresh rate, an SFC
algorithm is proposed to improve the refresh rate of vibration
measurement.

The essence of our SFC lies in decomposing the chirp
signal at the receiver end. Filters are utilized to break down
each chirp signal into multiple sub-frame chirp signals, each
characterized by different initial frequencies but with identical
time duration and bandwidth, as shown in Fig. 5. Each of these
sub-frame signals can be denoted as

em,n(t) = cos(2πfm,nt+
πB̃t2

T̃
) (8)

where m is the index of chirp signal, n is the index of sub-
frame chirp signal, fm,n represents the initial frequency of
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the n-th sub-frame chirp signal in the m-th chirp signal, B̃
and T̃ represent the constant bandwidth and time duration of
sub-frame chirp signals, respectively. Each received sub-frame
signal can be mixed with its corresponding transmitted sub-
frame signal. Unlike the ideal mixed signal as presented in
Eq. (3) that considers the entire chirp signal and for only one
reflection path, now the mixed signal after applying the low-
pass filter becomes

mm,n(t) =

N∑
i=1

αm,n,i

2
cos(2π

B̃

T̃
τm,n,it

+2πfm,nτm,n,i −
πB̃(τm,n,i)

2

T̃
))

(9)

where αm,n,i and τm,n,i represent the signal attenuation co-
efficient and time delay of the i-th path in the corresponding
sub-frame signal, respectively. The mixed signal mm,n(t) can
then be further simplified similarly to Eq. (4) as

mm,n(t) =

N∑
i=1

αm,n,i

2
cos(2πfm,n,it+ θm,n,i) (10)

where fm,n,i = B̃τm,n,i/T̃ and θm,n,i = 2πfm,nτm,n,i −
πB̃τ2m,n,i/T̃ represent the beat frequency and initial phase of
the i-th path in the corresponding sub-frame signal, respec-
tively.

The principle of identifying the peaks of direct and re-
flection signals, as shown in Fig. 3 is utilized to calculate
the coarse distance for each sub-frame signal using the beat
frequency, as described in Eq. (5). When the range bin of
adjacent sub-frames are the same, the initial frequency of
the signal does not affect the speed and delay of signal
transmission, and the beat frequency of the mixed sub-frame
chirp signal is the same as that of the mixed signal m(t).
The difference lies in the phase variation between them. In
addition, given the brief duration of each sub-frame signal, it
is assumed that the vibration pattern remains consistent across
adjacent sub-frames. Using Eq. (6), the relationship between
the phase variation of adjacent sub-frames and the vibration
can be obtained as

∆d =
c∆θ

2
=

c

2
(

θm,n

2πfm,n
− θm,n+1

2πfm,n+1
) (11)

where θm,n represents the initial phase of reflected signal from
vibrating object in the corresponding sub-frame signal.

In the SFC algorithm, multiple phase samples are obtained
within each frame of the chirp signal. The phase variation
between two sub-frame chirp signals typically does not exceed
the limit of π radians within 10 ms. Compared to traditional
methods, this approach effectively improve the accuracy of fine
distance estimation and increase the refresh rate for vibration
measurement.

Specifically, each frame of the chirp signal is designed
to have a duration of 50 ms, covering a 5 kHz frequency
range from 17 kHz to 22 kHz. In the SFC algorithm, each
chirp signal is decomposed into four (partially overlapped)
sub-frame chirp signals with a bandwidth of 2 kHz and a
duration of 20 ms. After performing the IQ decomposition
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Fig. 6. Practical signal spectrum with direct path, multipath and noise.

on each mixed sub-frame signal, the phases of all mixed sub-
frame signals are normalized based on their initial frequencies
fm,n, and the phase differences are taken based on the
normalized results to obtain the actual phase variation, thereby
achieving vibration measurement. It is important to note that
our algorithm is typically used to measure vibrations below
50 Hz. However, for vibrations in the 50-100 Hz range, the
parameters of the SFM algorithm need to be modified. The
original sub-frame chirp signals (with a bandwidth of 2 kHz,
a 1 kHz overlap, and a duration of 20 ms) are redesigned
by setting the new signal bandwidth to 1 kHz, with a 500
Hz overlap and a duration of 10 ms, thereby improving the
temporal resolution for measuring high-frequency signals and
enabling vibration measurement at higher frequencies.

B. Top and Bottom Microphone algorithm

In industrial environments, multipath effects are very com-
mon, and there is also mid-to-low frequency environmental
noise from vibrating objects and the surrounding environment.
Fig. 6 shows the spectra of an acoustic signal recorded in real
environment, from which multipath effect and noise can be
observed. The multipath effects can be mitigated by putting
the smartphone closer to the industrial equipment. However,
in certain hazardous industrial environments, it is necessary
to maintain a safe distance between the smartphone and the
industrial equipment. Therefore, a TBM algorithm is proposed
to reduce multipath interference and ensure the accuracy of the
system.

High-precision vibration measurement relies on accurate
phase extraction. From Eq. (11), it is evident that phase
variation is influenced by the initial frequency fmin and the
vibration movement d(t). When the initial frequency changes
while the vibration movement remains constant, the phase of
the mixed signal changes. In the IQ domain, this results in the
signal rotating around the origin of coordinates. Therefore,
if the same vibration can be simultaneously measured with
chirp groups having different initial frequencies, ideally, the
mixed signal corresponding to each chirp rotates around a
point in the coordinate system and forms a large arc. Thus, the
TBM algorithm is established step by step as follows: 1) fitting
of IQ phase sample circles for dual-microphone channel, 2)
fitting circles for IQ phase samples of multiple sub-frame chirp
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Fig. 7. Filtering out noise signals that do not meet the fixed phase variation
between the signals received by the dual microphone channels.

signals from the same microphone, 3) merging fitted circles
corrections to form a large arc.

1) Fitting circles for the dual channel: The proposed SFC
algorithm is first separately applied to the signals received
by two microphones. According to Eq. (7), any IQ sample
in the IQ phase coordinates can be represented as sym,n,x,
where y = 1, 2 represent the bottom and top microphones,
respectively, and x is the index of the number of sample points
contained in each IQ sample, ranging from 0 to X . It is also
worth noting that each IQ sample contains the same number
of sample points, i.e. X . Subsequently, the IQ phase samples
received simultaneously by the dual-microphone channels are
subjected to circle fitting, by transforming the fitting into an
optimization problem to obtain an optimized circle with center
Zc and radius Rc, where the summed geometric distance from
each IQ sample point to the circle is minimized:

Zc, Rc = arg min
Zc,Rc

Y∑
y=1

X∑
x=1

(∥sym,n,x − Zc∥ −Rc)
2 (12)

This optimization problem can be solved using the
Gaussian-Newton algorithm.

In complex environment, IQ samples contain multipath
effects resulting from reflections from both static and dynamic
objects. Therefore, it is necessary to combine the characteris-
tics of the dual microphones to improve the estimation robust-
ness. The constant phase difference ∆θD between the signals
received by the bottom and top microphones is calculated in
advance using the constant distance difference LD between
the smartphone’s bottom and top microphones to the vibrating
object, as shown in Fig. 2.

∆θD = unwrap(
4πfmin

c
LD) (13)

where the unwrap function resolves the phase ambiguity. This
known phase difference is used to filter out IQ phase samples
that do not meet the requirements from the fitted circle, as
illustrated in Fig. 7.

2) Fitting circles for the same microphone: In traditional
FMCW method, only a single chirp signal is transmitted at
a given time. However, through the SFC algorithm, multiple
sub-frame chirp samples are obtained within a range bin. Since
each sub-frame chirp is shorter compared to the whole chirp
signal, and all the sub-frame chirps fall within the same range
bin, the sub-frame chirp signals within a set of chirps can be

I

Q

  

      
 

      
 

sub-frame chirp

Noise

sub-frame chirp

Fig. 8. Filtering out IQ samples from multipath signals that cannot fall on
the concentric arc due to low SNR, where the impact of the Doppler effect
is eliminated by fitting multiple sub-frame signals.

considered to occur simultaneously. This means that the ideal
IQ samples fit into the arc that forms a concentric circle.

Our purpose is to utilize the symmetry of the object’s motion
in the same dimension to reduce the impact of the Doppler
effect caused by reflected signals. By fitting multiple sub-
frame signals to eliminate the Doppler effect, and filtering
out IQ samples from multipath signals that cannot fall on the
concentric arc due to low SNR, the IQ samples of each sub-
frame signal are placed on this concentric circle. This principle
is illustrated in Fig. 8.

In practice, the impact of the Doppler effect is first reduced
by using the relationship between phase and IQ samples,
applying Eq. (12) to obtain the fitted circle and solve the
optimization problem. Then, a bias coefficient is established
to measure the extent to which the IQ samples deviate from
the fitted circle, which can be represented as:

Km,n =
1

Rc

1

X

X∑
x=1

∥∥sym,n,x − Zc∥ −Rc∥ (14)

Based on some preliminary experiments, if the arc distance
from the fitted circle exceeds half of the fitted circle’s radius,
Rc, i.e. Km,n > 0.5, the corresponding IQ sample is consid-
ered as noise, which will then be eliminated.

3) Fitted circles correction: As shown in Fig. 9, by com-
bining the first and second steps, IQ samples identified as noise
in both stages are filtered out. The multiple concentric circles
are then unified, and the IQ samples of the sub-frame chirp
signals from the two microphones are concatenated. Eq. (11) is

Normal

      
 

Noise       
 

Normal       
 

Abnormal       
 

Normal

      
 

Normal       
 

Noise       
 

I

Q

   

Fig. 9. Calculating the phase variation between the IQ phase samples
corresponding to adjacent sub-frame signals after fitting all IQ samples into
a circle.
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then used to calculate the phase variation based on the initial
frequency of each sub-frame chirp signal. Subsequently, the
Quartile method [36] is employed to obtain the first three
quartiles Q1, Q2, and Q3 of the data set, respectively. Using
these three quartiles, the upper and lower bounds of the data
set are established, which can be represented as{

Emax = Q3 + p(Q3 −Q1)
Emin = Q1 − p(Q3 −Q1)

(15)

where p is a coefficient, typically taken as 1.5. The phase vari-
ation points outside the upper Emax and lower bounds Emin

are considered as outliers and are excluded. This proposed
TBM method is summarized in Algorithm1.

Algorithm 1 TBM Algorithm
Require: The mixed sub-frame chirp signal mm,n(t), the

number of sub-frame chirp signals N in the m-th chirp
signal

Ensure: Valid Phase variation J
1: Array U = 0, W = 0, SU = 0, SW = 0
2: for n = 2 to N do
3: Perform IQ decomposition for mm,n(t) to obtain IQ

samples sym,n,x, y is the index of microphones, ranging
from 1 to 2.

4: Fit circles based on Eq. (12) for IQ samples sym,n,x to
obtain phase θym,n corresponding.

5: if (θ1m,n-θ2m,n) satisfy known phase difference ∆θD
then

6: U ← s1m,n,x, W ← s2m,n,x

7: end if
8: end for
9: for i = 1 to length(U ) do

10: Fit circles based on Eq. (12) for U and W
11: Calculate bias coefficient KU and KW based on

Eq. (14) for U and W
12: if KU<0.5 && KW<0.5 then
13: SU ← U(i), SW ← W (i)
14: end if
15: end for
16: Perform Algorithm 2 on SU and SW to correct distortion

and obtain valid IQ samples HU and HW

17: Calculate ∆θU and ∆θW based on Eq. (11) for IQ samples
in HU and HW

18: Filter out outliers in ∆θU and ∆θW based on Eq. (15)
19: J ← ∆θU+∆θW

2
20: return J

C. Distortion correction

In practice, the unrelated motion when holding the smart-
phone will affect the phase trajectory of the received sig-
nal, leading to irregular phase variations and causing errors
in vibration measurements. Therefore, to address the phase
deviation caused by unrelated motion, a distortion correction
method is designed for the phase of sub-frame chirp signals
to resolve the phase bias.

The normal IQ samples of the vibration signal should all
fall on arcs of the same radius, as shown in Fig. 9. However,

I

Q

Ideal IQ samples       
 

  

Actual IQ samples       
 

O
Fitting to 

an ideal arc

Fig. 10. Correcting the distortion of actual IQ samples to the ideal arc.

influenced by the unrelated motion of the hand, the actual
IQ samples do not completely fall on the arcs of the same
radius. This discrepancy can lead to erroneous estimation of
the phase variation when normalized at the arc center, affecting
the accuracy of vibration measurements.

The core idea of this method is to correct the IQ samples
of each sub-frame chirp signal, aligning them to fall on arcs
with the same radius. In our IQ coordinate system, each arc
segment corresponding to an IQ sample is small, so the phase
deviation caused by changes in arc radius due to unrelated
motion has a weaker effect compared to the phase variation
caused by vibration.

Therefore, this correction process is performed with a linear
transformation, using the center Zc and radius Rc obtained
from Eq. (12) to correct each point in the IQ samples, ensuring
that these IQ sample points fall on the arcs of the same radius.
The Least Squares Method [37] is applied, with the weight
matrix G describing the deviation of each IQ sample point
from the estimated center, to correct each IQ sample point.
Specifically, the optimal center Zb, denoted as (Zbx, Zby), and
radius Rb are estimated for each IQ sample, where the initial
estimate of the radius Rb is Rc, and the initial estimate of the
center Zb is Zc. The IQ sample is estimated as follows:

[Ẑbx, Ẑby, R̂c]
T = (ATGA)−1ATG−1P (16)

where

A =


2∥|sym,n,1|X − Zbx∥ 2∥|sym,n,1|Y − Zby∥ −1
2∥|sym,n,2|X − Zbx∥ 2∥|sym,n,2|Y − Zby∥ −1

...
...

...
2∥|sym,n,X |X − Zbx∥ 2∥|sym,n,X |Y − Zby∥ −1

 ,

P =


∥sym,n,1 − Zb∥2
∥sym,n,2 − Zb∥2

...
∥sym,n,X − Zb∥2

 ,

G =
1

X

X∑
x=1

(∥sym,n,x − Zb∥ −Rb)
2I

(17)
where I is the identity matrix, |sym,n,x|X and |sym,n,x|Y re-
spectively represent the value of the IQ sample sym,n,x on the
horizontal and vertical axes.

Then, the result estimated by the Least Squares Method is
used to map each sample individually to the arc, as shown
in Fig. 10. In the presence of unrelated motion, this approach
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ensures that the error in vibration measurement remains close
to the error observed when the target is stationary, thus
meeting the requirements for accurate vibration measurement.
This proposed distortion correction method is summarized in
Algorithm2.

Algorithm 2 Distortion correction algorithm
Require: The center Zb and radius Rb of the fitted circles,

the valid IQ samples of two microphones BU and BW

Ensure: Valid IQ samples HU and HW

1: Array HU = 0, HW = 0
2: for i = 1 to length(BU ) do
3: Calculate the center Ẑb and radius R̂c of estimated arc

by Eq. (16) for BU (i) and BW (i), where A, P and G
are based on Eq. (17)

4: Calculate the IQ samples hU (i) and hW (i) after cor-
rection from the center and radius of estimated arc

5: HU ← hU (i), HW ← hW (i)
6: end for
7: return HU , HW

D. Vibration tracking

Based on the above circular fitting result, the relationship
between the IQ samples sym,n,x and the phase ∆θm,n is
obtained, which can be represented as

∆θm,n = arctan(
Qm,n+1 −Qm,n

Im,n+1 − Im,n
) (18)

where Im,n and Qm,n respectively represent the values of the
IQ samples sym,n,x on the I and Q coordinates. Here, arctan
denotes the arctan function. When the result is positive, it
indicates counterclockwise rotation of the IQ samples over
time between the preceding and subsequent sub-frames.

According to Eq (6) and Eq. (18), it can be determined
that when the IQ samples sym,n,x rotated clockwise over
time, the vibrating object vibrates towards the direction of
the smartphone, as shown in Fig. 11. Subsequently, by fitting
the relationship between the variation of the circular arc over
time, the relationship between phase variation and vibration
movement can be derived, thereby enabling real-time vibration
tracking. Then, by utilizing the relationship between phase
variation and vibration direction, the phase difference between
the IQ samples corresponding to the first and last sub-frame
signals in the fitted circle is calculated during the period when
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Smartphone

O

Vibrating direction

    

    

      

      

Fig. 11. The relationship between vibrating direction and IQ samples rotating
direction.

the vibration direction remains unchanged, thus achieving vi-
bration displacement measurement. Furthermore, this tracking
can be used to calculate the vibration frequency of industrial
equipment. Given the irregular nature of industrial equipment
vibrations, the vibration frequency is defined as the number of
directional changes in vibration movement within one second.

E. System capabilities

Mobile-Vib is a real-time vibration measurement and track-
ing system based on smartphones. The maximum measurable
vibration displacement of the system is designed to satisfy
the requirement of not exceeding half a phase cycle, that is,

c×180◦C
4×180◦C×fmin

= 5mm, with the theoretical minimum value
being 0. The maximum measurable frequency complies with
the Nyquist sampling theorem, which is 1s

2×5ms = 100Hz,
with the theoretical minimum value being 0. Furthermore, the
system has a refresh rate of 100 Hz for measurement results.
When the vibration speed of the object is within the speed
range measurable by the Mobile-Vib system, and the SNR
meets the vibration measurement requirements, the system
can measure and track vibration displacements of 5 mm and
vibration frequencies within 100 Hz.

However, the minimum measurable vibration displacement
and frequency in practical use are limited by factors such as
SNR and measuring distance. Under the requirements of SNR
and object vibration speed, the system can measure a minimum
vibration displacement of 0.482 mm and a minimum vibration
frequency of 2.1 Hz at a distance of 0.3 meters from the
vibrating object, with a relative error of no more than 50%,
as shown in Section V-D.

V. EXPERIMENTAL EVALUATION

In this section, the implementation of Mobile-Vib and its
experimental evaluation in our laboratory and the engine room
of a small ship are introduced.

A. Implementation setting

1) Implementation: The proposed Mobile-Vib system uti-
lizes the commercial smartphone Huawei P20 Pro and em-
ploys an ultrasonic frequency range of 17 kHz to 22 kHz
for vibration measurement, which is beyond the range of
human hearing. We have set the duration of the chirp signal
to 50 ms. The sampling rate for both the speaker and the
microphone is 48 kHz. The phone’s volume is maintained
at 80%, and all signal processing and analysis are conducted
on the smartphone. In the ultrasonic measurement method, a
power amplifier and a piezoelectric speaker are connected to
the audio output of a laptop as the signal generator, while a
custom high frequency response MEMS microphone serves as
the signal receiver, as shown in Fig. 12(a). A 40 kHz ultrasonic
signal is used for vibration measurement. The sampling rate
for both the signal generator and the receiver is 96 kHz, and
the laptop volume is maintained at 80%.

It is worth noting that temperature affects the speed of
sound. Based on the relationship between temperature and
sound speed [38], [39], we set the sound speed at 340 m/s,
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Fig. 12. Experimental setting. (a) In a laboratory environment, the vibration of
an object is simulated by inputting displacement and frequency at the control
end of the setup. The ball screw works with the motor to convert rotational
motion into linear motion, thereby simulating the vibration of the object. A
metal plate is mounted on the motion slider of the setup as the reflective
surface. The Mobile-Vib system, or an ultrasonic-based signal generator with
a high-frequency response MEMS microphone and a signal receiver consisting
of a power amplifier and a piezoelectric speaker, is placed at a short distance
from the reflective surface to measure the vibration. (b) In a case study of
engine inspection on a real ship, the readings from the piezoelectric sensor are
used as the ground truth for measuring the vibration of the object. The operator
holds the Mobile-Vib system at a short distance to measure the vibration and
uses a laser rangefinder to determine the distance between the operator and
the vibrating object.

corresponding to 15◦C, ensuring that the vibration displace-
ment error caused by a maximum temperature difference of
15◦C within the 0−30◦C range does not exceed 0.13 mm and
remains within an acceptable range. For use under extreme
temperature conditions, the speed of sound can be directly
adjusted in the system according to the current temperature,
ensuring that the vibration measurement error remains within
this range.

2) Experiment setting: In a laboratory setting, we use an
electric motor (Leadshine DM542) as the vibration source,
with a metal plate positioned above it as shown in Fig. 12(a).
A smartphone is placed on a tripod. We evaluate Mobile-Vib
based on vibration distance and frequency. Additionally, we
use Mobile-Vib to monitor real-world vibrations of the engine
of a small ship, as shown in Fig. 12(b).

3) Ground truth: In the laboratory experiments, we use an
electric motor to generate vibrations in the direction of the
smartphone, with frequencies of 25 Hz, 50 Hz, and 100 Hz,
and respective amplitudes of 1 mm and 2 mm. Simultaneously,
we use a laser rangefinder (Bosch GLM 100-25C) to measure
the distance between the smartphone and the steel plate on
the engine. In the ship’s engine room, we place a piezoelectric
sensor (WITMOTION WTVB01-485) on the engine casing to
obtain vibration data via a computer interface.

4) Comparison: We compare Mobile-Vib with the tra-
ditional acoustics-based phase method mentioned in Sec-
tion III-B (referred to as FMCW-Phase [29]) and the ultra-
sonic measurement method (referred to as Ultrasound [24]),
using the same experimental setup conditions and data pre-
processing techniques for all three methods.

5) Metrics: We evaluate the performance of Mobile-Vib
using displacement and vibration frequency estimation errors.
The displacement error is obtained by comparing the ground
truth value with the estimated displacement. The frequency
error is derived from the variance in the vibration signal within
a 1 s interval and the deviation from the ground truth value.
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Fig. 13. Overall performance of Mobile-Vib.

B. Benchmark experiment

In this section, we evaluate the performance of Mobile-Vib
based on the estimation of distance and frequency.

1) Overall performance: We implemented the Mobile-Vib
in the user space of the existing Huawei P20 Pro device,
achieving an average processing time of about 200 ms for
1 s audio samples, which ensures real time processing of
vibration detection. The runtime of the algorithm components,
encompassing the SFM, TBM, correction, and vibration track-
ing algorithms is shown in Table I.

TABLE I
STATISTICS ACROSS 50 MEASUREMENTS RUNTIME OVER A 1 S SIGNAL.

Operation Runtime (ms)
SFC algorithm 43.5 ± 5.7
TBM algorithm 120.1 ± 12.9

Distortion Correction 30.6 ± 3.1
Vibration Tracking 2.1 ± 0.6

Total 196.3 ± 22.3

Fig. 13 shows the performance of vibration measurement
for the proposed Mobile-Vib method and the comparison
method. The smartphone was placed at a distance of 0.5
m from the normal engine equipment. The results indicate
that mean error of the Mobile-Vib in vibration displacement
estimation is 0.484 mm, and the mean error in vibration
frequency estimation is 4.4 Hz. Compared to the FMCW-Phase
and Ultrasound methods, Mobile-Vib demonstrates superior
noise suppression and robustness against multipath signal
interference, effectively reducing displacement and frequency
errors.

2) Impact of different measuring distances: In this experi-
ment, we evaluate the vibration measurement performance of
Mobile-Vib at different measuring distances in a laboratory
setting. We conducted tests at distances of 0.3 m, 0.5 m, and
1 m from the vibrating object. Motor vibration is set to have 50
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Fig. 14. Impact of measurement distance on displacement estimation.
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Fig. 15. Impact of measurement distance on frequency estimation.

Hz frequency, with 1 mm or 2 mm displacements, and towards
the direction of the smartphone. Figs. 14 and 15 illustrate the
vibration estimation mean errors of both the Mobile-Vib and
FMCW-Phase systems at these three distances.

Under 1 mm vibration displacement, the mean error in
vibration displacement estimation for Mobile-Vib at a distance
of 0.5 m is 0.471 mm, while the mean error in vibration fre-
quency estimation is 4.2 Hz. However, the error increases with
increase in the measuring distance. In contrast, Ultrasound
demonstrates better accuracy in both vibration displacement
and frequency estimation at short distances. Nevertheless, as
the distance increases, Ultrasound is significantly affected by
air attenuation, leading to a substantial decrease in accu-
racy. At a distance of 1 m, the maximum relative error in
vibration displacement exceeds 90%. FMCW-Phase, on the
other hand, is more severely impacted by noise and multipath
effects. While achieving comparable accuracy to Mobile-Vib
in vibration displacement estimation, this method results in
an error of 6.4 Hz in vibration frequency estimation. These
results also suggest that the FMCW-Phase method struggles in
extracting the correct vibration signal, and its performance can
be significantly degraded by random environmental factors.

3) Impact of different vibration frequencies: We conducted
experiments to evaluate the impact of vibration frequencies
on the accuracy of vibration detection. Initially, we positioned
the smartphone at a distance of 0.5 m from the vibrating
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Fig. 16. Impact of vibration frequencies on displacement estimation.
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Fig. 17. Impact of vibration frequencies on frequency estimation.

Shaking Rotating Shifting

Fig. 18. Smartphone irrelevant motions.

object. Subsequently, we utilized a motor to induce vibrations
at frequencies of 25 Hz, 50 Hz, and 100 Hz, with respective
displacements of 1 mm and 2 mm. We then employed Mobile-
Vib to detect the vibrations generated by the motor.

Figs. 16 and 17 display the vibration errors of Mobile-
Vib and the FMCW-Phase scheme. For a 1 mm vibration
displacement, the mean error in vibration displacement esti-
mation at 50 Hz for Mobile-vib is 0.462 mm, and the mean
error in vibration frequency estimation is 4.2 Hz. Ultrasound
shows a smaller error in vibration frequency estimation for
vibration at 25 Hz, but as the vibration frequency increases,
its accuracy significantly drops below that of Mobile-Vib.
Compared to the FMCW-Phase method, Mobile-Vib shows
improvements in both vibration displacement and frequency
estimation performance. In addition, it is observed that as
the vibration frequency increases, the vibration error also
increases. This is because, with an increase in frequency, the
number of sampling points collected by the system within each
vibration cycle decreases, leading to larger measurement errors
between sampling points. However, it is worth noting that the
errors generated by high-frequency vibration of the object do
not cause significant impact on vibration detection.

C. Effect of practical factors

In this section, we evaluated the practical impact of real-
world factors on Mobile-Vib. We placed the smartphone 0.5
m in front of the motor and induced 1 mm and 2 mm vibrations
at a frequency of 50 Hz.

1) Impact of irrelevant motions: We evaluated the effec-
tiveness of Mobile-Vib in removing irrelevant motions. During
practical vibration measurements using Mobile-Vib, unavoid-
able slight movements of the hand can affect the vibration
measurement results. We decomposed the slight movements
of the hand into three types of motions: shaking, rotating,
and shifting, as shown in Fig. 18. The angles for shaking and
rotating range in between ± 20 degrees, while the vertical
displacement for shifting is about 5 cm.

Subsequently, we placed the mobile phone at a distance of
0.5 m from the vibrating object, and set a motor vibration
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Fig. 19. Impact of irrelevant motions on displacement estimation.
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Fig. 20. Impact of irrelevant motions on frequency estimation.

frequency of 50 Hz. Figs. 19 and 20 illustrate the vibration
displacement and frequency estimation results under these
three types of motions, for Mobile-Vib and FMCW-Phase. The
displacement error under 1 mm vibration in Mobile-Vib for
shaking is 0.584 mm, with a frequency error of 5.4 Hz. For
rotating, the displacement error is 0.572 mm, with a frequency
error of 4.8 Hz, and for shifting, the displacement error is
0.561 mm, with a frequency error of 4.5 Hz.

From the results, it is evident that shaking produces the
largest error. This is likely due to the fact that when the phone
is shaking, the displacement variation between the phone’s
microphone and speaker relative to the vibrating object is
large, whereas the displacement variations for shifting and
rotating are relatively smaller. Compared to FMCW-Phase and
Ultrasound, Mobile-Vib reduces the error by more than 20%
when handling irrelevant motions. This result also indicates
that, even when affected by hand motion, Mobile-Vib can en-
sure that the measurement errors remain within an acceptable
range.

2) Impact of different surroundings: To study the robust-
ness of the system in noisy environments, we tested Mobile-
Vib under different environmental noise conditions. In the
laboratory setting, we played the noise recorded from the
ship’s engine room and the water flow noise generated during
the ship’s actual operation. We define the SNR as the ratio
of the signal strength received by Mobile-Vib in the 17-22
kHz effective signal frequency range, free from mechanical
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Fig. 21. Impact of surroundings on displacement estimation.
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Fig. 22. Impact of surroundings on frequency estimation.
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Fig. 23. Impact of smartphone models on vibration estimation.

equipment interference, to the noise strength generated by
mechanical equipment. The SNR in the engine room noise
background alone was 18.4 dB, and the SNR in the water
flow noise background alone was 26.3 dB. Figs. 21 and 22
illustrate the vibration measurement errors of Mobile-Vib and
FMCW-Phase under these two types of noise signals. It was
observed that the water flow noise signal has a smaller impact
on Mobile-Vib compared to the ship’s engine room noise. The
mean error in vibration 1 mm displacement estimation under
the water flow noise is 0.531 mm, while the mean error in
vibration frequency estimation is 4.4 Hz. This is due to the fact
that the SNR of the noise from the ship’s engine room is lower
than that of the water flow noise, and its frequencies, similar
to those used in Mobile-Vib vibration detection, interfere with
signal transmission, causing larger measurement errors.

Compared to FMCW-Phase, Mobile-Vib can reduce the
displacement estimation error by 30% and the frequency
estimation error by 50%. Ultrasound, due to its higher fre-
quency, is less affected by environmental noise. However,
Mobile-Vib still manages to reduce the vibration displacement
and frequency estimation errors by about 10% compared to
Ultrasound. Considering the overall error results, Mobile-Vib
is able to constrain the errors caused by these two types of
noise signals within an acceptable range, thus not significantly
affecting the vibration detection results.

3) Impact of different smartphone models: In practical
applications, operators could use Mobile-Vib to conduct vibra-
tion detection on various models of smartphones. Therefore, to
validate the applicability of Mobile-Vib, we conducted a com-
prehensive assessment using multiple models of smartphones
in our experiments. In this study, we evaluated three models of
Android smartphones: OnePlus 8 Pro, Redmi, and Huawei P20
Pro. As depicted in Fig. 23, we observed that the mean error
in vibration displacement estimation and vibration frequency
estimation using Mobile-Vib on the three devices was similar,
with relative errors within a 3% range. This indicates that
Mobile-Vib is capable of meeting the requirements of various
smartphones, demonstrating its universality.

D. Case study of engine inspection of real ship
We conducted practical experiments by using a Huawei P20

Pro smartphone equipped with Mobile-Vib to conduct engine
inspections within the engine room of a small ship. Fig. 24
depicts our actual experimental setup, where we mounted a
piezoelectric sensor on the engine casing. The data acquired
from this sensor was transmitted via a wired connection to a
host computer, serving as the ground truth for the vibration
measurements.
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normal engine abnormal engine

Fig. 24. Actual test engine with two status.

In the actual experiments, we conducted tests on known
normal engines and engines with slight anomalies. It is im-
portant to note that the anomalies in the engines were due
to minor loosening of their screws, and the extent of these
anomalies was not sufficient to pose a risk to normal operation
or to the personnel conducting the inspections. Therefore,
we, equipped with protective gear, manually held smartphones
and ensured that the engines operated at minimal power. We
conducted vibration measurements on the normal engine at
distances of 0.3 m, 0.5 m, and 1 m from the engine. For safety
reasons, we only performed vibration tests on the anomalous
engine at a distance of 1 m. Fig. 25 shows the measurement
error of vibration displacement and frequency, and Fig. 26
illustrates an example clip of movement measurement on
normal and abnormal engines. These results demonstrate the
system capabilities of Mobile-Vib, showing that under real-
world conditions, the vibration displacement estimation error
for the normal engine at a distance of 1 m is 0.629 mm, and
the vibration frequency estimation error is 5.6 Hz. For the
anomalous engine at a distance of 1 m, the displacement error
is 0.663 mm, and the frequency error is 5.1 Hz. This indicates
that Mobile-Vib is capable of achieving sub-millimeter-level
vibration measurements in practical applications.
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Fig. 25. The performance of Mobile-Vib in real-world environment.
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Fig. 26. The result of Mobile-Vib movement.

VI. DISCUSSION

In this section, we discuss the limitations of the system and
its potential applications in industrial environments.

Mobile-Vib is subject to certain limitations in terms of its
algorithm. Although our algorithm leverages the symmetry
of vibrations within the same dimension and uses a fitting
approach to mitigate the effects of the Doppler shift, it is still
constrained by velocity. Specifically, Mobile-Vib requires the
object’s motion speed to remain below the coarse distance res-
olution between two consecutive timestamps, which is limited
to 340m/s

2×5kHz×5ms = 6.8m/s. Apart from this limitation, the system
also faces performance limitations. In practical applications,
the minimum measurable displacement and frequency are
constrained by factors such as signal sampling rate, SNR, and
measuring distance, making it difficult to achieve theoretical
limits. This was verified in the case study conducted during
the experiments. Under conditions where the relative error
of vibration remains below 50%, and the distance between
Mobile-Vib and the vibrating object is 0.3 m, the minimum
detectable displacement was measured at 0.482 mm, and the
minimum measurable frequency was 2.1 Hz. These results
deviate from the theoretical values of 0 mm and 0 Hz.

In practical applications, we will take advantage of the fast,
low-cost, and portable characteristics of Mobile-Vib to apply
it in industrial scenarios where noise intensity is moderate,
mechanical operations do not pose risks to human safety, and
proximity to equipment is feasible during operation in low-
temperature environments. Furthermore, we can extend the
vibration measurement of the system to three dimensions.
Although a single measurement can only detect vibrations
on the plane perpendicular to the smartphone screen, the
portability of the system allows for manual adjustments to
the measurement orientation. By ensuring that the vibration
dimensions of multiple measurements are non-parallel, we
can utilize orthogonal decomposition to project the measured
vibration values onto a three-dimensional coordinate system,
thereby achieving three-dimensional vibration measurement of
the target object.

VII. CONCLUSION

In this paper, we have proposed Mobile-Vib for sub-
millimeter vibration measurements based on smartphones. In
the Mobile-Vib system, a SFC algorithm was designed to im-
prove signal-to-noise ratio and resolve phase wrapping issues,
thereby reducing vibration errors. Additionally, we developed
a TBM algorithm, which emulates multiple antennas using the
dual microphones of a smartphone to separate the vibration
signal of the vibrating object from multipath noise. Finally, we
corrected phase distortion in the signal, effectively addressing
phase deviations caused by irrelevant motions from human
movements.

Our evaluation demonstrates that Mobile-Vib performs well
in both laboratory and field environments, achieving accurate
vibration measurements. For vibrations with a displacement of
1 mm, the mean displacement error is 0.462 mm and frequency
error is 4.2 Hz.
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